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Summary 

Treatment of VO(acac), with the facial&dentate organometallic ligand 
[o-CpCo (P(O)(OEt),} 3 J- affords a new binuclear compound 
[n-CpCo (P(O)(OEt), ) 3VO(acac)] (I). This compound undergoes protonation 
with HPF, in the presence of 1~10-phen~t~oline (phen), or Z,Z‘-bipy~dyl 
(bipy), to yield binuclear cationic derivatives [a-CpCo{P(O)(OEt), ) 3 - 
VO(phen))]‘PF,- (II), and, [~-CpCo(P(0)(OEt)2}3VO(bipy)]+PF,- (III). The X- 
ray crystal structure determination and full characterization of I has been per- 
formed. The catalytic oxygenation and oxygen transfer to 3,5di+butylcatechol 
in the presence of I, II+, or III+ complexes is reported. 

Well-characterized oxovanadium(IV) and peroxovanadium(V) complexes have 
proved to be efficient reagents in the epoxidation of olefins and aromatic hydro- 
carbons’ [ 11. Likewise, they are effective in the non-enzymatic cleavage of 
aromatic rings, displaying in this case a behaviour analogous to pyrochateeases 
[Z]. As an analogy with molybdenum complexes it has been suggested that 
vanadium plays an important role as dioxygenase metalloenzyme [ 31, developing 
a series of bioinorganic models of oxygen transfer reactions. This type of models 
indicates that the oxidation site, in this case VOz+ and ]VO,(O)]*, is subject to 
steric and electronic control on the part of the ancillary,ligands so that it con- 
trols oxygen transfer in a regioselective manner. 
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2.0023), in the three compounds reported here. Values for hyperfine coupling 
constants A,, and g show a variation owing to the replacement of the oxygenated 
bidentate ligand (acac)- by one nitrogenated bidentate ligand. The latter pos- 
sesses a o-donor character stronger than that of the oxygenated ligands. This 
favors the free electron displacement over the’nitrogenated ligands; spin-orbital 
coupling is thus decreased, which results in a value closer to go. 

The molecular structure of I is shown in Fig. 1, which also contains important 
bond distances and angles. The vanadium(IV) ion is in an octahedral configura- 
tion, V06, and it shows only small deviation from the normal octahedral sym- 
metry. The V-O distances are much longer than those found in the VO(acac)l 
complex. This may be due to a major o-donor effect of the fat-tridentate ligand 
in the opposite facial position of the octahedron. Besides, the vanadium-oxygen 
distances in vanadyl ion (1.587(3) A) are in the 1.56-1.76 W range as reported 
for other vanadyl complexes [13a]. The acetylacetone skeleton is planar as ex- 
pected for the six-membered ring (deflection from the medium plane: -0.030 
and +0.035 A). The phosphonate group acts as bridging ligands between the 

cm 
Fig.l.Molecularstructure of [q-C,HsCo{P(0)(OC,H,),},VO(acac)l (I). Tbeunitcell containstwo 
moleculasindependentrtabiliaedby Van der Waals forces. Selected distances (A) and angles ("): Co-P(l) 

2164(1),C0-P(2) 2.169(1).C~P(3) 2.100~1).P~2~0~2)1.488~3).P~2~0~6)1.693~3), P(2)_0(7) 
1.693(4), 0(6)-C(10)1.434(8).C(10)-C(11)1.302(11),V-0(1) 2.016(2),V-O(2) 2.212(s), V-O(3) 
2016(3).V-0(10)2002(3).V-0(11)2.004(3).V-0~12)1.687(3). C(20)-0(11)1.264(6). 
C(20~C(19)1.393(7).C(19~C(18)1.382(7),C~18~0~10)1.266~6):P~1)_C0-P~2) 89.70(6). 
P(l)-Co-P(a) 90.12(4). P(2)-Co-P(3) 90.01(4),Co-P(2~0(2)117.8(1),P(2~0(6FC(10) 122.0(4). 
0(6)-C(10~C(11)149.4(3),0(11)_V-0(10) 88.6(1).0(11FC(20~C(19)126.1(4), 0(2OFC(l9)- 
C(18)1~.9(4).C(19)_C(18)_0(10)126.4(4).V-0~10)_C~18)127.6(3).V-0~11~~20)128.2~3). 

(Atomic coordinates, tables ofanglesanddistances fortbisstructwehavebeen deposited withthe 
Cambridge Crystallographic DataCentreandcanbe obtainedonrequestfromDr.Ol6aKennard. 
University Chemical Laboratory.Lenrfiald Road,Cambridge CB21EW.U.K.) 
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Co”II and Vv centers. The molecule I presents disorder in the phosphonate 
ligands and particularly in .the ethyl group. This fact precluded B factor 
anisotropic refinement of the terminal carbon atoms of the ethyl group. These 
deviations has been described as enhanced thermal motions for the same fat- 
tridentate ligand [ 13b]. 

Catalytic oxygen transfer reactions and catalytic oxidation of catechol were 
carried out in the presence of catalytic amounts of any of these three new 
compounds. Quantitative conversion is obtained through the oxidation of 3,5-d& 
t-butyl-1,2-dihydroxybenzene (3,5-DTBC) in CHzClz in the presence of hy- 
drogen peroxide or dioxygen and catalytic amounts of the binuclear complexes. 
This process affords 3,5-DTB-1,2_ortho-quinone, as the main product and smal- 
ler amounts of muconic acid anhydride (see note 11): 

Hz02 or OJ (1 atm); r. t. 
cat:[VO (fat-Tridentat Ligand) ( 

“d : aCaC 
-, phen , or bipy 

Electronic and steric control induced by the facial tridentate organometallic 
ligand is reflected in the high percentage of orthoquinone obtained, unlike 
other oxovanadium(IV) catalysts in which the oxygen transfer reaction and 
cleavage of the catechol ring is more important than the oxidation into ortho- 
quinone [ 121. 0x0, peroxo, and dioxo complexes of transition metals with do 
electronic configuration coordinated to this organometallic ligand are under in- 
vestigation at present. 
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